Nonlinear regression in parameter estimation from polarographic signals
نویسندگان
چکیده
منابع مشابه
Nonlinear Regression in Parameter Estimation From Polarographic Signals
In this work we describe a detailed treatment of polarographic data curves, including error analysis, by means of nonlinear least-squares in its standard form (or resorting to the errors in variables model). Error estimates for the related parameters are additionally verified by Monte-Carlo simulation and resampling techniques.
متن کاملSparse Nonlinear Regression: Parameter Estimation under Nonconvexity
We study parameter estimation for sparse nonlinear regression. More specifically, we assume the data are given by y = f(x�β∗) + �, where f is nonlinear. To recover β∗, we propose an �1regularized least-squares estimator. Unlike classical linear regression, the corresponding optimization problem is nonconvex because of the nonlinearity of f . In spite of the nonconvexity, we prove that under mil...
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملA Nonlinear Regression based Approach for Multilayer Soil Parameter Estimation
The estimation of soil parameters of multilayer structure leads to useful information for designing a safe grounding system. This paper presents a nonlinear regression based estimation scheme to extract soil parameters from the kernel function of apparent earth resistivity. The kernel function of apparent earth resistivity can be obtained from the measured apparent earth resistivity data. The p...
متن کاملSparse Nonlinear Regression: Parameter Estimation and Asymptotic Inference
We study parameter estimation and asymptotic inference for sparse nonlinear regression. More specifically, we assume the data are given by y = f(x>β∗) + , where f is nonlinear. To recover β∗, we propose an `1-regularized least-squares estimator. Unlike classical linear regression, the corresponding optimization problem is nonconvex because of the nonlinearity of f . In spite of the nonconvexity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Chemistry
سال: 2000
ISSN: 0097-8485
DOI: 10.1016/s0097-8485(00)00061-9